Core-binding factor: a central player in hematopoiesis and leukemia.

نویسندگان

  • N A Speck
  • T Stacy
  • Q Wang
  • T North
  • T L Gu
  • J Miller
  • M Binder
  • M Marín-Padilla
چکیده

Consistent chromosomal rearrangements are found in a large number of hematopoietic tumors. In many cases, these rearrangements disrupt genes whose normal function is required for the proper development of blood cells. Excellent examples are the chromosomal rearrangements t(8;21)(q22;q22), t(12;21)(p13;q22), and inv(16)(p13q22) that disrupt two of the genes encoding a small family of heterodimeric transcription factors, core-binding factors (CBFs). CBFs consist of a DNA-binding CBFalpha subunit and a non-DNA-binding CBFbeta subunit. The t(8;21), associated with de novo acute myeloid leukemias, disrupts the CBFA2 (AML1) gene, which encodes a DNA-binding CBFalpha subunit. The t(12;21), the most common translocation in pediatric acute lymphocytic leukemias, also disrupts CBFA2. The CBFB gene, which encodes the non-DNA-binding subunit of the CBFs, is disrupted by the inv(16) in de novo acute myeloid leukemias. All chromosomal rearrangements involving the CBFA2 and CBFB genes create chimeric proteins, two of which have been unequivocally demonstrated to function as transdominant negative inhibitors of CBF function. Both the Cbfa2 and Cbfb genes are essential for normal hematopoiesis in mice, because homozygous disruption of either gene blocks definitive hematopoiesis. Recent data suggest that Cbfa2 and Cbfb are required for the emergence of definitive hematopoietic stem cells in the embryo from a putative definitive hemangioblast precursor. The transdominant negative inhibitor of CBF created by the inv(16), when present from the beginning of embryogenesis, also blocks the emergence of definitive hematopoietic cells in the embryo. On the other hand, chromosomal translocations involving the CBFA2 and CBFB genes in leukemias block hematopoiesis at later steps. This may reflect a difference in the timing at which translocations are acquired in the leukemias, which presumably is subsequent to emergence of the definitive hematopoietic stem cell. The cumulative data suggest that although the earliest requirement for Cbfa2 and Cbfb is for emergence of definitive hematopoietic stem cells, both genes are also required at later stages in the differentiation of some hematopoietic lineages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AML1-FOG2 fusion protein in myelodysplasia.

Core binding factor (CBF) participates in specification of the hematopoietic stem cell and functions as a critical regulator of hematopoiesis. Translocation or point mutation of acute myeloid leukemia 1 (AML1)/RUNX1, which encodes the DNA-binding subunit of CBF, plays a central role in the pathogenesis of acute myeloid leukemia and myelodysplasia. We characterized the t(X;21)(p22.3;q22.1) in a ...

متن کامل

Core-Binding Factor: A Central Player in Hematopoiesis and Leukemia 1

The I n v o l v e m e n t o f CBFs in H u m a n Disease Consistent chromosomal rearrangements are found in a large number of hematopoietic tumors. In many cases, these rearrangements disrupt genes whose normal function is required for the proper development of blood cells. Excellent examples are the chromosomal rearrangements t(8;21)(q22;q22), t(12;21)(p13;q22), and inv(16)(p13q22) that disrupt...

متن کامل

Down-regulation of the RUNX1-target gene NR4A3 contributes to hematopoiesis deregulation in familial platelet disorder/acute myelogenous leukemia.

RUNX1 encodes a DNA-binding α subunit of the core-binding factor, a heterodimeric transcription factor. RUNX1 is a master regulatory gene in hematopoiesis and its disruption is one of the most common aberrations in acute leukemia. Inactivating or dominant-negative mutations in the RUNX1 gene have been also identified in pedigrees of familial platelet disorders with a variable propensity to deve...

متن کامل

Apoptosis induction in acute promyelocytic leukemia cells through upregulation of CEBPα by miR-182 blockage

MicroRNAs (miRNAs) involved in regulation of the genes. The CCAAT/enhancer-binding protein-α (CEBPα) is a crucial transcription factor for normal hematopoiesis and cell cycle that frequently disrupted in human acute myeloid leukemia (AML). The miR-182 up-regulation in several malignant diseases such as AML was reported, in the other hand bioinformatics analysis revealed CEBPα targeted by miR-18...

متن کامل

The roles of transcription factors in B lymphocyte commitment, development, and transformation.

Studies of normal blood cell development and malignant transformation of hematopoietic cells have shown that the correctly regulated expression of stage- and lineage-specific genes is a key issue in hematopoiesis. Experiments in transgenic mice have defined a number of transcription factors such as SCL/Tal, core-binding factor/acute myeloid leukemia, and c-myb, all crucial for the establishment...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 59 7 Suppl  شماره 

صفحات  -

تاریخ انتشار 1999